自訂 Cookie
禁止且拒絕未經各資訊當事人同意,擅自蒐集本服務提供的使用者個人資訊資料等資料之行為。即使是公開資料,若未經許可使用爬蟲等技術裝置進行蒐集,依個人資訊保護法可能會受到刑事處分,特此告知。
© 2025 Rocketpunch, 주식회사 더블에이스, 김인기, 大韓民國首爾特別市城東區聖水一路10街 12, 12樓 1號, 04793, support@rocketpunch.com, +82 10-2710-7121
統一編號 206-87-09615
更多
自訂 Cookie
禁止且拒絕未經各資訊當事人同意,擅自蒐集本服務提供的使用者個人資訊資料等資料之行為。即使是公開資料,若未經許可使用爬蟲等技術裝置進行蒐集,依個人資訊保護法可能會受到刑事處分,特此告知。
© 2025 Rocketpunch, 주식회사 더블에이스, 김인기, 大韓民國首爾特別市城東區聖水一路10街 12, 12樓 1號, 04793, support@rocketpunch.com, +82 10-2710-7121
統一編號 206-87-09615
更多


유진무
미국 라이스 대학교에서 컴퓨터공학과 데이터사이언스 복수전공에 있습니다. 머신러닝/인공지능 관련 분야에서 4년 일했습니다. 베트남 수학 올림피아드 참가, 영국국제 수학 경시대회 금메달 수상과, TEDx 초청 받아 강연한 경력이 있습니다. 현재 군복무중에 있으며, 2025년 4월 15일에 전역 예정입니다.
職涯
貼文
AI 職涯摘要
유진무님은 4년 차 머신러닝/인공지능 전문가로, 테서에서의 LLM 미세 조정 및 상품 랭킹 알고리즘 개발, Microsoft에서의 AI 모델 배포 최적화 경험을 보유하고 있습니다. UVA에서의 머신러닝 연구를 통해 소비자 행동 분석 및 정책 효과 검증 경험도 있습니다. 현재 군 복무 중이며, 2025년 4월 전역 예정입니다.
經歷
- Fine-tuned pre-trained LLMs (GPT-3.5-turbo-0613, HuggingFace BERT-base) on product review datasets to perform sentiment analysis and keyword extraction; integrated transfer learning techniques and optimized hyperparameters using AdamW; improved sentiment analysis accuracy by 82% using cross-entropy loss and keyword extraction F1-score by 38% - Designed a 3-layer LSTM architecture incorporating ReLU activations, dropout regularization, and batch normalization to process user behavioral data (e.g., views, clicks, purchases) and survey features; implemented embedding layers to encode categorical inputs and utilized a time-distributed dense layer for temporal feature learning. - Built a product ranking algorithm using an ensembled multi-classifier approach (Random Forest, Gradient Boosting, XGBoost) on 48 product parameters; optimized hyperparameters with Hyperopt, resulting in a 9% increase in purchase rate and a 38% rise in click-through rate. Deployed the pipeline using TensorFlow, PyTorch and BentoML, incorporating ONNX for cross-platform compatibility and real-time inference scalability.
更多
- Fine-tuned a GPT-3 Davinci model using PyTorch to generate high-fidelity images from natural language prompts, leveraging advanced transfer learning techniques. - Streamlined machine learning deployment workflows via Azure Machine Learning Studio, reducing deployment latency by 35%. - Engineered a fully operational web app using Node.js for model deployment, integrating OAuth-based social network authentication through Azure App Services to enhance user security and scalability.
更多
- Built the website user-interface using HTML, CSS, JavaScript and plug-ins/add-ons to build, enhance and troubleshoot the website and its capabilities - Implemented front-end architecture through React.JS to design user-facing features and building reusable components and front-end libraries for easy development in the future - Gained experience with the Node.JS, Git Version Control System and RESTful APIs - Published Website: https://teracomix.com/new
更多
- Published and authored the peer-reviewed article “Analyzing Consumer Behaviors and Attitudes Towards Plastic Bag Consumption in Hanoi Wet Markets" alongside collaborators from UVA, Duke, UC Berkeley, and TU Delft. - Implemented unsupervised machine learning algorithms, including K-Nearest Neighbors (KNN) and Support Vector Machines (SVM), to analyze stated preference surveys (n=1000+), identifying material composition and cost as the most influential factors in plastic bag usage. - Designed and executed an A/B test involving 1200+ participants across two homogeneous wet markets, finding that a 1,000 VND increase in plastic bag price reduced consumption by 92%, demonstrating the potential efficacy of price-based intervention policies.
更多
- Conducted research on Laos’s primary education market compared to other Southeast Asian emerging markets, especially in regards to enrolment in private institutions, net enrolment rate and variations across sexes using data from the World Bank and the Laos Government; stakeholders: Montrose International, World Bank, and International Labor Organization - Employed Python’s ‘wbdata’ module and ‘pandas’ library & R’s ‘WDI’ library and ‘ggplot2’ in order to scrape data from the World Bank V2 Indicators API & create visualizations and graphs - Used Excel to perform qualitative statistical analysis for Know One Teach One Vietnam (KOTO) graduates to examine their level of success depending on multiple variables, and its correlation to gender, race and ethnicity; published findings
更多
活動
最近活動
獲獎 2
證照 1
專案 2
新聞/媒體 1
프로젝트
Chevron KFA
2023년 1월 - 2023년 1월 · 1개월
https://github.com/jl170/KFA-Chevron-Challenge - Used pandas to analyze Chevron’s data on 32 different environmental indicator variables. Used sklearn to train Gaussian Process Regression models, PCA model and naive models to predict the state with the highest renewable energy investment ROI
프로젝트
Play_Zetamac
2022년 11월 - 2022년 11월 · 1개월
https://github.com/jinmooxd/playzetamac - Used Python’s selenium library to create a bot that scrapes data off of the Zetamac website and solve mathematical inequalities - Created a virtual environment so other users can run the script without needing to pip install selenium and other libraries
뉴스/미디어
Why the New Paradigm of Environmental Remediation Starts with Data Science.
2022년 7월
Jinmoo Yoo explores how commonly held assumptions about the 'keys to climate change' may be holding us back from making real changes. Instead, he demonstrates how a personal project enlightened his belief that data science can lead us towards strategies that are more accurate, specific and effective…
자격증
Google Data Analytics Certification
2021년 8월
Google에서 게시한 데이터 분석 전문 과정. 데이터 분석 및 시각화를 위해 Python, R, SQL 및 Tableau를 사용하는 방법을 배움.
수상
청년유엔기후회의
UNDP · 2021년 3월
유엔개발계획(UNDP), 천연자원환경부, 호찌민공산청년연합이 공동주최한 제1회 청년유엔기후회의에 초청받아 해결책 제시.
語言
원어민
원어민
상급 (업무상 원활한 의사소통)
초급
초급
이 프로필의 담당자이신가요?
인증을 통해 현재 프로필에 병합하거나 삭제할 수 있습니다. 만약 인증할 수 없는 경우 본인임을 증빙하는 서류 제출 후 프로필 관리 권한을 취득할 수 있습니다.