自訂 Cookie
禁止且拒絕未經各資訊當事人同意,擅自蒐集本服務提供的使用者個人資訊資料等資料之行為。即使是公開資料,若未經許可使用爬蟲等技術裝置進行蒐集,依個人資訊保護法可能會受到刑事處分,特此告知。
© 2025 Rocketpunch, 주식회사 더블에이스, 김인기, 大韓民國首爾特別市城東區聖水一路10街 12, 12樓 1號, 04793, support@rocketpunch.com, +82 10-2710-7121
統一編號 206-87-09615
更多
自訂 Cookie
禁止且拒絕未經各資訊當事人同意,擅自蒐集本服務提供的使用者個人資訊資料等資料之行為。即使是公開資料,若未經許可使用爬蟲等技術裝置進行蒐集,依個人資訊保護法可能會受到刑事處分,特此告知。
© 2025 Rocketpunch, 주식회사 더블에이스, 김인기, 大韓民國首爾特別市城東區聖水一路10街 12, 12樓 1號, 04793, support@rocketpunch.com, +82 10-2710-7121
統一編號 206-87-09615
更多

職涯
貼文
AI 職涯摘要
묵함맏드여르알리저너브님은 Frontend Lead로서 7년차 경력을 바탕으로 디지털 자산 거래 플랫폼의 프론트엔드 아키텍처 설계 및 개발을 이끌었습니다. Next.js, Node.js, TypeScript 등을 활용한 실시간 데이터 처리 및 로우 레이턴시 구현 경험이 있으며, Django, React Native를 포함한 풀스택 개발 경험 또한 보유하고 있습니다.
經歷
• Led frontend architecture and development for a digital asset trading platform handling approximately $50M in monthly transaction volume. • Designed and deployed a low-latency real-time data layer using custom subgraph indexers, graph-node, and a dedicated REST and graphQL API, ensuring latency under 200ms for trading dashboards and partner integrations. • Technologies: Next.js, Node.js, TypeScript, Web3, AWS, GCP, Docker, GraphQL
更多
Contributed to B2R2 binary analysis framework. Implemented instruction lifters and format parsers for MIPS, RISC-V, and PA-RISC, enabling support for additional CPU architectures in reverse engineering tasks.
更多
• Co-architected, built, and scaled the core backend analytics platform, processing over 5M daily transactions and supporting 30+ retail clients serving a combined 3M+ daily active users. • Reduced report generation latency by 60%. Achieved this through database schema redesign, table partitioning, advanced SQL optimization, Redis caching, and scheduled jobs. • Built real-time dashboards and launched an AI-powered Collaborative Filtering recommendation engine generating 100k+ user interactions - boosting client conversion rates within weeks. • Technologies: Django, Next.js, TypeScript, PostgreSQL, AWS, Redis, Pytorch, Docker
更多
• Developed and trained a conditional GAN model for grayscale image colorization, increasing the usable training dataset size by 30% for downstream computer vision tasks. • Architected and deployed a scalable web crawler, collecting over 1 million images for training AI models. Achieved 100,000+ images/day throughput and 95% success rate. • Engineered a high-performance web-based 2D data labeling tool, accelerating the creation of large datasets for AI models by 10x. Implemented intuitive features like keyboard shortcuts and temporal navigation, reducing average labeling time per item by 80%. • Technologies: Python, PyTorch, AWS, MongoDB, Django, JavaScript, Apache Kafka
更多
Refined real-time delivery tracking system, enabling dynamic courier location updates for customers, resulting in a ∼30% reduction in customer service inquiries and fostering a 15% increase in repeat order rates. •Implemented a dynamic ETA calculation engine, which utilizes real-time traffic data and driver behavior models to provide customers with more accurate delivery times, reducing average customer queries by 30%.
更多
活動
프로젝트
UzAnalitika
2023년 7월 - 2023년 11월 · 5개월
• Built an e-commerce analytics SaaS used by over 2,000 sellers, tracking more than 500,000 products daily. • Architected a high-performance data pipeline using Django and Celery with complex SQL query optimization and database partitioning to handle large-scale data analysis.
語言
고급 (자유로운 의사소통)
중급 (업무상 의사소통)
이 프로필의 담당자이신가요?
인증을 통해 현재 프로필에 병합하거나 삭제할 수 있습니다. 만약 인증할 수 없는 경우 본인임을 증빙하는 서류 제출 후 프로필 관리 권한을 취득할 수 있습니다.